skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Salib, Daniel J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nontrivial geometry of electronic Bloch states gives rise to topological insulators which are robust against sufficiently weak randomness inevitably present in any quantum material. However, increasing disorder triggers a quantum phase transition into a featureless normal insulator. As the underlying quantum critical point is approached from the topological side, small scattered droplets of normal insulators start to develop in the system and their coherent nucleation causes ultimate condensation into a trivial insulator. Unless disorder is too strong, the normal insulator accommodates disjoint tiny topological puddles. Furthermore, in the close vicinity of such a transition the emergent islands of topological and trivial insulators display spatial fractal structures, a feature that is revealed only by local topological markers. Here, we showcase this (possibly) generic phenomenon that should be apposite to dirty topological crystals of any symmetry class in any dimension from the Bott index and local Chern marker for a square-lattice-based disordered Chern insulator model. 
    more » « less
  2. Topological lattice defects, such as dislocations and grain boundaries (GBs), are ubiquitously present in the bulk of quantum materials and externally tunable in metamaterials. In terms of robust modes, localized near the defect cores, they are instrumental in identifying topological crystals, featuring the hallmark band inversion at a finite momentum (translationally active type). Here we show that the GB superlattices in both two-dimensional and three-dimensional translationally active higher-order topological insulators harbor a myriad of dispersive modes that are typically placed at finite energies, but always well-separated from the bulk states. However, when the Burgers vector of the constituting edge dislocations points toward the gapless corners or hinges, both second-order and third-order topological insulators accommodate self-organized emergent topological metals near the zero energy (half-filling) in the GB mini Brillouin zone. We discuss possible material platforms where our proposed scenarios can be realized through the band-structure and defect engineering. 
    more » « less